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Abstract

We report on the numerical simulation of a two-fluid magnetohydrodynamics problem arising in the industrial

production of aluminium. The motion of the two non-miscible fluids is modeled through the incompressible Navier–

Stokes equations coupled with the Maxwell equations. Stabilized finite elements techniques and an arbitrary

Lagrangian–Eulerian formulation (for the motion of the interface separating the two fluids) are used in the numerical

simulation. With a view to justifying our strategy, details on the numerical analysis of the problem, with a special

emphasis on conservation and stability properties and on the surface tension discretization, as well as results on tests

cases are provided. Examples of numerical simulations of the industrial case are eventually presented.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The numerical simulation of the electrolysis cell for the industrial production of aluminium is a problem

of outstanding difficulty. Let us briefly indicate that a schematic picture of the cell is as follows (see e.g.,

Lacamera et al. [28]): an electric current of the order of 105. A runs through two horizontal layers of

conducting incompressible fluids, namely a bath of an aluminium oxide above, and a layer of liquid alu-

minium below (see Fig. 1). With a view to reducing the energy cost, the distance between the carbon anode

covering the top of the cell and the surface of the aluminium layer (a perfectly conducting fluid directly

connected to the cathode at the bottom of the cell) is to be kept as small as possible. However, due to the
presence of the electric current, the conducting fluids experience strong Lorentz forces and therefore move.

This causes the interface separating the two fluids to also move, which may lead to instabilities. Ensuring a

compromise between these two contradictory needs to have a small anode-aluminium distance in order to

reduce the cost, and a large enough one in order to prevent short-circuits is the experimental challenge.
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Additional (substantial) difficulties (that will not be dealt with hereafter) come from the presence of a gas

phase (carbon oxides), from ferromagnetic effects on the boundary of the cell, and from solidification

processes taking place on the edges of the cell.

The numerical simulation can efficiently complement the experiments in giving some insight into the

working of the cell. There is indeed a large body of literature devoted to such numerical simulations (see

[7–9,35,36,39,41]). Of course, in view of the large number of physical phenomena interacting with each
other, a direct complete simulation of the cell cannot be achieved. At present, only partial simulations are

available. Simplifying assumptions must be made. With a view to drawing a comparison with the numerous

strategies based upon the linearization of the governing equations at the vicinity of a stationary solution

(see e.g., [7]), we have decided to adopt a fully nonlinear strategy where no linearization is made.

The governing equations we shall discretize are the time-dependent incompressible Navier–Stokes

equations for two viscous immiscible fluids coupled through Ohm�s law with the Maxwell equations in

their parabolic form (see Eqs. (1)–(5) below). Let us emphasize that no additional simplification will be

made on these equations and that we shall therefore deal with all the nonlinearities of this strongly
coupled system of PDEs. The mathematical analysis of this system, as well as the foundation of it on

the basis of a whole hierarchy of possible models, is an issue that has already been dealt with by two of

us in a series of previous works (see [13,15–18]). Finally, let us also mention that in the absence of a

convenient turbulence model for the MHD flows, we prefer to concentrate our efforts on the (laminar)

Navier–Stokes equations.

From the numerical viewpoint, the simulation of such a system requires to understand the following

issues:

• what type of finite elements should be used,
• how to ensure the conservation of the mass of each fluid and the energy stability in the time-dependent

simulation,

• how to deal with the motion of the interface, and to ensure, when necessary, the motion of the mesh,

• how to account properly for the surface tension effects when needed.

In the sequel, we shall detail how we have answered to these questions, but let us briefly say in this

introduction that we use an arbitrary Lagrangian–Eulerian (ALE) formulation to move the interface and

Fig. 1. Schematic represention of an aluminium cell.

164 J.-F. Gerbeau et al. / Journal of Computational Physics 184 (2003) 163–191



the mesh, and a discretization scheme such that a geometric conservation law holds. We are aware of the

fact that some of these ingredients are now commonly used in the finite element community. Never-

theless, we believe that one of the originalities of the present work lies in the careful combination of those

techniques in the framework of MHD in such a way that the crucial properties of conservation of mass

and of energy stability is ensured at the discrete level. Moreover, we have checked the validity of our

approach on some non-trivial benchmark tests, which are new in the finite element framework, to the

best of our knowledge.

The paper is organized as follows. Section 2 presents the governing equations in their dimensional and
next adimensional form. In Section 3, we give details on the ALE formulation we use. Section 4 is devoted

to the presentation of the global numerical algorithm. The conservation and stability properties of the

discretization we have chosen are investigated in Section 5. A special attention is paid to the discretization

of the surface tension term in Section 6. Finally, Section 7 presents numerical tests on academic as well as

industrial situations.

Let us mention that an abridged version of this paper focusing on more practical aspects appears in

[20].

2. The MHD equations for two fluids

2.1. Notations

As announced in Section 1, we consider a system consisting of two viscous incompressible non-miscible

fluids in the presence of a magnetic field. The fluids fill in a fixed bounded domain X of Rd (with d ¼ 2 or 3).

The governing equations are the so-called incompressible MHD equations (see [27] for example). We de-

note by q the density of the fluids, u the velocity field, B the magnetic field, and p the pressure field. The
electrical conductivity r and the viscosity g are assumed to be known functions of q. Then, the following
equations are satisfied in X:

otq þ divðquÞ ¼ 0; ð1Þ

qotuþ qu � ru� divð2g�ðuÞÞ þ rp ¼ qf þ 1

l
curlB� B; ð2Þ

divu ¼ 0; ð3Þ

otBþ curl
1

lr
curlB

� �
¼ curlðu� BÞ; ð4Þ

divB ¼ 0; ð5Þ

where �ðuÞ ¼ ðruþruTÞ=2. For the sake of simplicity, we assume that

ðB � nÞjoX ¼ given; ð6Þ

ðcurlB� nÞjoX ¼ given: ð7Þ

For the sake of simplicity, we assume in the following theoretical analysis zero magnetic boundary con-

ditions. The results can be extended by standard technics to more realistic cases when B � njoX, curlB� njoX
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are non-zero. Of course, in our numerical experiments (see Section 7), the magnetic boundary conditions

are non-zero. As for the hydrodynamic boundary conditions, pure slip will be assumed on the side walls

and no-slip elsewhere. We complement this system with the initial conditions

qjt¼0 ¼ q0; ujt¼0 ¼ u0; and Bjt¼0 ¼ B0; ð8Þ

where u0 and B0 are divergence free vector fields. The density of each fluid is assumed to be constant at
t ¼ 0: if x is in the domain occupied by the fluid i then q0ðxÞ ¼ qi, where qi is a given constant, for i ¼ 1; 2.
Note that Eq. (1) implies that

qðx; tÞ ¼ qi for x located in the fluid i at time t ði ¼ 1; 2Þ: ð9Þ

We shall denote the jump of density through the interface by

dq ¼ q2 � q1:

The viscosity and the electrical conductivity of each fluid are also assumed to be constant:

gðqiÞ ¼ gi and rðqiÞ ¼ ri ði ¼ 1; 2Þ: ð10Þ

We refer the interested reader to [15] for an existence result of a weak solution to the system (1)–(5), and

to [18] for the description of some numerical methods to impose the boundary conditions (6), (7).

2.2. Non-dimensional form and body force correction

For computational purposes, it proves convenient to rewrite the preceeding equations in non-dimen-
sional form and to eliminate the body force in one fluid, in the spirit of the method described in [19]. In

practice, the body force f will be the gravity. Thus, it is sufficient to restrict oneself to the case when the

body force is potential

f ¼ rU:

Characteristic values of the magnetic field B, of the velocity U and of the length L are introduced. Time
and pressure characteristic values are then defined by T ¼ L=U , P ¼ q1U

2. The MHD system rewritten in

terms of the non-dimensional variables x=L; t=T (still denoted by x and t) and ~uu ¼ u=U , ~BB ¼ B=B, and
~pp ¼ p=P , involves seven non-dimensional numbers

Rei ¼
qiUL
gi

; i ¼ 1; 2 ðReynolds numbersÞ;

Rmi ¼ lriLU ; i ¼ 1; 2 ðmagnetic Reynolds numbersÞ;

S ¼ B2

lq1U 2
ðcoupling parameterÞ;

Fr ¼ U 2

gL
ðFroude numberÞ;

M ¼ q2
q1

ðdensity ratioÞ:

The non-dimensional potential of the body force is defined by ~UU ¼ U=ðgLÞ where g is the gravitational field
strength. A ‘‘corrected pressure’’ ~PP is introduced

~PP ¼ ~pp �M
Fr

~UU:
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This allows to eliminate the body force in fluid 2. Although this trick does not change anything at the

continuous level, it greatly improves the robustness of the numerical computations.

In fluid 1 (lower fluid, i.e., aluminium), the equations read

ot~uuþ ~uu � r~uuþr ~PP � div
2

Re1
�ð~uuÞ

� �
¼ 1�M

Fr
r~UU þ S curl ~BB� ~BB;

ot~BBþ curl
1

Rm1

curl ~BB

� �
¼ curlð~uu� ~BBÞ;

and in fluid 2 (upper fluid, i.e., cryolite)

Mot~uuþM~uu � r~uuþr ~PP � div
M
Re2

�ð~uuÞ
� �

¼ S curl ~BB� ~BB;

ot~BBþ curl
1

Rm2

curl ~BB

� �
¼ curlð~uu� ~BBÞ:

3. Weak ALE formulation for two-fluid MHD flows

We tackle the problem of two fluids simulations with the so-called ALE approach. Our compu-

tational grid therefore follows the physical interface. Although other methods have been investigated
and have proven to be efficient in the past to simulate two-fluid flows, in particular on fixed grids (see

for example [21]), the choice of the ALE approach is motivated here by two arguments: first, strong

topological changes of the interface are not expected in our problem; second, a high precision on the

position of the interface is of major interest in aluminium electrolysis simulations and we believe that

such a precision can be obtained at a lower cost with ALE methods rather than with purely Eulerian

ones. The ALE formulation, first introduced by Hirt et al. [24] has been used by several authors. In

the case of one fluid with a free surface, see for example Soula€ıımani et al. [42,43], Maury [32], Huerta
and Liu [26], Cairncross et al. [1,6], and Ho [25]. In the case of two fluids, see for example Ras-
mussen et al. [38]. In the context of MHD, the ALE method has been used in 2D simulations of

compressible flows in the pioneer works by Brackbill and Pracht [5] and Brackbill [3], using finite

difference methods.

We now introduce some notations (see Fig. 2). For t > 0, we denote the physical domain occupied

by the fluid i by Xi;t for i ¼ 1; 2. The domain X is the union of X1;t and X2;t. The interface between X1;t

Fig. 2. The partition of the domain X.
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and X2;t is denoted by Rt. The normal to Rt oriented from X1;t to X2;t is denoted by n and we set n1 ¼ n

and n2 ¼ �n. We define a reference configuration X̂X ¼ X̂X1 [ X̂X2, X̂Xi being Xi;t¼0, and we consider a

mapping ÂAt which associates to a point x̂x 2 X̂X a point x 2 X. Throughout, the mapping ÂAt will be

assumed to be smooth enough in x̂x, invertible with a smooth inverse, and differentiable with respect to
t. For a function wð�; tÞ defined on X, we denote by ŵwð�; tÞ the function defined on X̂X satisfying

ŵwðx̂x; tÞ ¼ wðx; tÞ with x ¼ ÂAtðx̂xÞ. By a classical abuse of notation, we will denote ow
ot jx̂x the time derivative

on the ALE frame

ow
ot

����
x̂x

ðx; tÞ ¼ oŵw
ot

ðx̂x; tÞ with x̂x ¼ ÂA�1
t ðxÞ:

The domain velocity is defined by

wðx; tÞ ¼ ŵwðx̂x; tÞ ¼ oÂAt

ot
ðx̂xÞ with x̂x ¼ ÂA�1

t ðxÞ:

If m is the normal to oX, the mapping ÂAt is supposed to be such that

w � m ¼ 0 on oX; ð11Þ

which means that the domain X is fixed in Rd and

u � n ¼ w � n on Rt; ð12Þ

which means that the domains X1;t and X2;t follow the free interface. Thus,

for x̂x 2 X̂Xi; x ¼ ÂAtðx̂xÞ 2 Xi;t; i ¼ 1; 2: ð13Þ

Although the domains X and X̂X are in fact the same domain of Rd , we will keep both notations for the sake

of clarity.

We now recall some standard formulae which will be useful in the sequel. Otherwise explicitly men-

tioned, all the differential operators (r; div; curl; . . .) will be taken with respect to the Eulerian variable x.
We have

ow
ot

����
x̂x

ðx; tÞ ¼ oŵw
ot

ðx̂x; tÞ ¼ ow
ot

ðx; tÞ þ w � rwðx; tÞ: ð14Þ

We denote by ĴJt the Jacobian matrix of ÂAt,

ĴJt ¼
oÂAt

ox̂xj

" #
;

and by ĴJt its determinant. Then, we have the Euler formula

oĴJt
ot

ðÂA�1
t ðxÞ; tÞ ¼ ĴJtðÂA�1

t ðxÞ; tÞdivwðx; tÞ: ð15Þ

Using this relation we get in particular

d

dt

Z
X

wðx; tÞdx ¼ d

dt

Z
X̂X

ŵwðx̂x; tÞ ĴJt dx̂x ¼
Z

X̂X

o

ot
ðŵwðx̂x; tÞĴJtÞdx̂x ¼

Z
X̂X

oŵw
ot

ðx̂x; tÞ ĴJt

 
þ ŵwðx̂x; tÞĴJt divw

!
dx̂x
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and thus

d

dt

Z
X

wðx; tÞdx ¼
Z

X

ow
ot

����
x̂x

dxþ
Z

X
wðx; tÞdivwdx: ð16Þ

We now propose a weak formulation of Eqs. (1)–(5). The following functional spaces will be needed:

H1
0ðXÞ ¼ fv 2 ðH 1ðXÞÞd ; v ¼ 0 on oXg;

H1
nðXÞ ¼ fC 2 ðH 1ðXÞÞd ;C � n ¼ 0 on oXg;

and L20ðXÞ, the space of L2ðXÞ functions whose integral over X vanishes. We define

V ¼ L2ð0; T ;H1
0ðXÞÞ; W ¼ L2ð0; T ;H1

nðXÞÞ; M ¼ L2ð0; T ; L20ðXÞÞ:

We will denote by ð�; �Þ the ðL2ðXÞÞd scalar product

ðu; vÞ ¼
Z

X
u � vdx;

and we introduce the following bilinear and trilinear forms:

a1ðv1; v2Þ ¼
Z

X
2g�ðv1Þ � �ðv2Þdx;

a2ðC1;C2Þ ¼
Z

X

1

lr
curlC1 � curlC2

�
þ adivC1 divC2

�
dx;

a being a given positive constant

bðv; qÞ ¼
Z

X
qdivvdx;

cðv1; v2; v3Þ ¼
Z

X
v1 � rv2 � v3 dx;

cwðv1; v2; v3Þ ¼
Z

X
q ðv1 � wÞ � rv2 � v3 dx;

dðv1; v2; v3Þ ¼
Z

X
v2 � v3 divv1 dx;

lðv;C1;C2Þ ¼
Z

X
v� C1 � curlC2 dx:

We introduce the test function spaces on the reference domain

V̂V ¼ H1
0ðX̂XÞ; ŴW ¼ H1

nðX̂XÞ; M̂M ¼ L20ðX̂XÞ:
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On the current domain, the test function spaces are defined by

V0 ¼ fv : X � ½0; T � ! Rd ; vðx; tÞ ¼ v̂vðÂA�1
t ðxÞÞ; v̂v 2 V̂V g;

W0 ¼ fC : X � ½0; T � ! Rd ; Cðx; tÞ ¼ ĈCðÂA�1
t ðxÞÞ; ĈC 2 ŴW g;

M0 ¼ fq : X � ½0; T � ! R; qðx; tÞ ¼ q̂qðÂA�1
t ðxÞÞ; q̂q 2 M̂Mg:

It is worth noticing that the test functions do not depend on t on the reference frame whereas they do on the
current one. More precisely, denoting by ðviÞi¼1;...;d the components of v 2 V0, we have

ovi
ot

����
x̂x

¼ ovi
ot

þ w � rvi ¼ 0: ð17Þ

Of course, similar relations hold for the functions of W0 and M0. We now give the formulation that will be

used in the numerical simulations.

3.1. Weak ALE formulation

Suppose that the domain is moving as described above (in particular relations (11) and (12) are satisfied).

We compute the density q simply by

qðx; tÞ ¼ q0ðx̂xÞ ¼ qi for x 2 Xi;t ð18Þ

and we look for ðu;B; pÞ in V � W �M such that, for all ðv;C; qÞ in V0 � W0 �M0:

d

dt
ðqu; vÞ þ a1ðu; vÞ þ cwðu; u; vÞ � dðw; qu; vÞ þ bðv; pÞ þ

1

l
lðv;B;BÞ ¼ ðqf; vÞ; ð19Þ

bðu; qÞ ¼ 0; ð20Þ

d

dt
ðB;CÞ þ a2ðB;CÞ � cðw;B;CÞ � dðw;B;CÞ ¼ lðu;B;CÞ: ð21Þ

Proposition 1. System (1)–(5) is formally equivalent to the weak ALE formulation (18)–(21).

Proof. Let ðq; u;B; pÞ be a solution to (1)–(5). Eq. (1) clearly yields (18). As for the momentum Eq. (19),
using formula (14), we have from (2)

qotujx̂x þ qðu� wÞ � ru ¼ g

with g ¼ qf �rp þ divð2g�ðuÞÞ þ ð1=lÞ curlB� B. We multiply this equation by v 2 V0 and we integrate
on X:Z

X
q
ou

ot

����
x̂x

� vdxþ
Z

X
qðu� wÞ � ru � vdx ¼

Z
X
g � vdx:

Using (16)–(18), we can write the first term as follows:Z
X

q
ou

ot

����
x̂x

� vdx ¼
Z

X

o

ot

����
x̂x

ðqu � vÞdx ¼ d

dt

Z
X

qu � vdx�
Z

X
qu � vdivwdx:
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Thus the momentum equation reads

d

dt

Z
X

qu � vdxþ
Z

X
qðu� wÞ � ru � vdx�

Z
X

qu � vdivwdx ¼
Z

X
g � vdx:

Then, classical integration by parts on the right-hand side of this equation gives (19).

Analogous computations give the left-hand side of Eq. (21) and its right-hand side is a straightforward

consequence of the formulaZ
X
curlB � Cdx ¼

Z
X
B � curlCdxþ

Z
oX
n� B � Cdx

and the boundary condition (7).

Conversely, suppose that ðq; u;B; pÞ is a solution to the weak ALE formulation (18)–(21). With (18), it is
clear that

oq
ot

����
x̂x

¼ 0: ð22Þ

Moreover, using (12),

ðu� wÞ � rq ¼ dqn � ðu� wÞjRt ¼ 0:

Therefore, with (14),

otq þ divðquÞ ¼ otq þ u � rq ¼ otqjx̂x þ ðu� wÞ � rq ¼ 0;

which proves (at least formally) that (1) holds. The same manipulations as above show that (2) and (4) hold,
and the continuity relation (3) is a clear consequence of (20).

We now turn to relation (5). Let /̂/ 2 H 2ðX̂XÞ with o/=on ¼ 0 on oX. Taking r/ as a test function in (21),

using (14) and (16), we obtainZ
X
otB � r/dxþ a

Z
X
divðr/ÞdivB ¼ 0:

Using o/=on ¼ 0 and B � n ¼ 0 on oX, this givesZ
X
ðotdivB� aMðdivBÞÞ/dx ¼ �a

Z
oX

oðdivBÞ
on

/dr:

Thus

otdivB� aMðdivBÞ ¼ 0 in X;

oðdivBÞ
on

¼ 0 on oX:

Using divB0 ¼ 0, this implies (5). �

4. Discretization

The goal of this section is to present the space and time discretizations that are used to solve system

(19)–(21). For this purpose, we introduce a new trilinear form ~ccw which is a slight modification of cw:
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~ccwðv1; v2; v3Þ ¼ cwðv1; v2; v3Þ þ
1

2

Z
X

qdivv1 v2 � v3 dxþ
dq
2

Z
Rt

ðv1 � wÞ � nv2 � v3 dr: ð23Þ

Note that at the continuous level, relations (3) and (12) yield

cwðu; u; vÞ ¼ ~ccwðu; u; vÞ:

The first integral in (23) is analogous to the well-known Temam�s term that allows to recover at the discrete

level, when the density is constant, the skew-symmetry property of the advection term. The second integral

is less standard. Its introduction will be motivated in Section 5.3 (see Eq. (34)). Note that the normal

vectors n introduced here are not the approximated node normals defined below (Section 5.2, formula (28))

but rather the ‘‘real’’ normals defined almost everywhere on the interface, and in particular on the Gauss–

Legendre integration points located inside the elements.

4.1. Space discretization

We consider a finite element discretization of the current domain X. The finite element spaces for the
velocity, the magnetic field, and the pressure are, respectively, denoted by

Vh � ðH 1
0 ðXÞÞd ; Wh � ðH 1

n ðXÞÞd ; Mh � L20ðXÞ:

In our numerical tests, Vh and Wh are always based on the same same Lagrangian finite element. We use
either stable or stabilized spaces. By ‘‘stable spaces’’, we mean a pair ðVh;MhÞ of spaces satisfying the
following standard inf–sup condition:

inf
p2Mh

sup
vh2Vh

bðvh; qÞ
kvhkH1kqkL2

P b > 0:

We refer the reader to Gunzburger et al. [23] for a complete analysis of the stable spaces for the stationary

MHD equations and also to Ben Salah et al. [2] for an alternative formulation. In the computations with

stable elements, we used Q2 elements for the velocity and the magnetic field and, either discontinuous
piecewise P1 or continuous piecewise Q1 elements for the pressure. On the other hand, the stabilized finite
elements spaces that we use are based on the formulation proposed in [14]. This choice allows us to use

equal order finite elements for the three unknown fields (typically Lagrangian Q1 finite elements) and
improves the stability at high Reynolds numbers.

4.2. Time discretization and linearization

We denote by Xn
i the domain occupied by the fluid i at time tn and by wn the approximated domain

velocity at time tn. We introduce the application An;nþ1 : X ! X such that An;nþ1 maps Xn
i onto Xnþ1

i for
i ¼ 1; 2:

x ¼ An;nþ1ðyÞ ¼ y þ dtwnðyÞ for y 2 Xn
i :

Whenever it improves the clarity, y will denote the points in Xn
i and x the points in Xnþ1

i . We denote by Jn;nþ1
the Jacobian matrix of An;nþ1,

Jn;nþ1 ¼
oAn;nþ1

oyj

	 

;

and by Jn;nþ1 the absolute value of its determinant.
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We use the following semi-implicit Euler scheme:

1

dt
ðqunþ1; vÞnþ1 þ anþ11 ðunþ1; vÞ þ ~ccnþ1wn ðun; unþ1; vÞ � dnþ1ðwn; qunþ1; vÞ

þ bnþ1ðv; pnþ1Þ þ 1

l
lnþ1ðv;Bn;Bnþ1Þ ¼ ðqfnþ1; vÞnþ1 þ 1

dt
ðqun; vÞn;

bnþ1ðunþ1; qÞ ¼ 0;

1

dt
ðBnþ1;CÞnþ1 þ anþ12 ðBnþ1;CÞ � cnþ1ðwn;Bnþ1;CÞ

� dnþ1ðwn;Bnþ1;CÞ � lnþ1ðunþ1;Bn;CÞ ¼ 1

dt
ðBn;CÞn:

ð24Þ

The superscripts on the forms ð�; �Þ, a1, a2, b, c, d, and l indicate the configuration on which the space
integrals are performed. For example

ðqunþ1; vÞnþ1 ¼
Z

Xnþ1
qunþ1 � vdx ¼

X
i¼1;2

qi

Z
Xnþ1i

unþ1 � vdx;

ðqun; vÞn ¼
Z

Xn
qun � vdx ¼

X
i¼1;2

qi

Z
Xni

un � vdy;

anþ11 ðunþ1; vÞ ¼
Z

Xnþ1
2g �ðunþ1Þ � �ðvÞdx ¼

X
i¼1;2

2gi

Z
Xnþ1i

�ðunþ1Þ � �ðvÞdx;

~ccnþ1wn ðun; unþ1; vÞ ¼
X
i¼1;2

qi

Z
Xnþ1i

ðun
	

� wnÞ � runþ1 � vþ 1

2
divununþ1 � v



dx

þ dq
2

Z
Rnþ1

ðun � wnÞ � nunþ1 � vdr:

Note that in the latter formula, un is a shortcut for un �A�1
n;nþ1ðxÞ. The other definitions for l, b, d, and a2

can be deduced straightforwardly.

We emphasize that the system to be solved at each time step is now linear but that the hydrodynamic and

magnetic equations are still coupled through the terms lnþ1ðv;Bn;Bnþ1Þ and lnþ1ðunþ1;Bn;CÞ. As will be
shown in Section 5.3, this choice is one of the ingredients of the stability property of the scheme.

4.3. Global algorithm

In order to describe the global algorithm, we still have to define precisely the mesh motion. The basic

requirements are to satisfy the kinematic conditions (11) and (12). Next, we have to choose how to move the

points inside the domain. Many solutions have been proposed in the literature. For example, we refer to

Cairncross et al. [6] for a presentation of a method adapted to the cases when the mesh experiences large
strains. In the practical problem we are interested in, it seems sufficient to adopt the very standard method

that consists in solving a simple Poisson problem to compute the velocity of the mesh (see e.g., [43]).

Moreover, we choose to constrain the displacement to be purely vertical. This choice, which is definitely

reasonable in the physical situation that we consider, has important consequences on the quality of the

algorithm. This point will be made precise in Section 5.

We may now write the global algorithm. For some given Xn and ðun;Bn; pnÞ, Xnþ1 and ðunþ1;Bnþ1; pnþ1Þ
are computed as follows:
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1. Compute the terms on Xn (namely ð1=dtÞ
R

Xn qnun � vdx and ð1=dtÞ
R

Xn B
n � CdxÞ).

2. Compute wn ¼ ð0; 0;wÞ with w such that

� Mw ¼ 0 on Xn
i ; i ¼ 1; 2;

w ¼ un � n=nz on Rn;

ow
on

¼ 0 on oX:

ð25Þ

3. Move the mesh: Xnþ1 ¼ Xn þ dtwn. The matrix corresponding to system (24) is computed on this new

domain.

4. Solve (24) to determine ðunþ1;Bnþ1; pnþ1Þ. The resolution is performed by a GMRES iterative proce-
dure with an ILU preconditioner and ðun;Bn; pnÞ as the initial guess.

5. Conservation and stability properties

In this section, two important properties of the above algorithm are proved: the mass conservation and

the energy stability.

5.1. Geometric conservation law

Lemma 1. Suppose that the domain velocity wn has the form ð0; 0;wÞ. Let w be a function defined on Xnþ1
i for

i ¼ 1 or 2. ThenZ
Xnþ1i

wðxÞdx�
Z

Xni

w �An;nþ1ðyÞdy ¼ dt
Z

Xni

w �An;nþ1ðyÞdivy wn dy ð26Þ

¼ dt
Z

Xnþ1i

wðxÞdivxwn �A�1
n;nþ1ðxÞdx: ð27Þ

Proof. The change of variable defined by x ¼ An;nþ1ðyÞ gives in the first integralZ
Xnþ1i

wðxÞdx ¼
Z

Xni

w �An;nþ1ðyÞJn;nþ1 dy:

With the assumption on the mesh velocity, the Jacobian matrix has the following form:

Jn;nþ1 ¼
1 0 0

0 1 0

dtðow=oy1Þ dtðow=oy2Þ 1þ dtðow=oy3Þ

2
4

3
5;

and therefore

Jn;nþ1 ¼ 1þ dtdivy wn;

which concludes the proof of the first relation (26).

For relation (27), we perform in the second integral of the left-hand side the change of variable defined

by y ¼ A�1
n;nþ1ðxÞ. Noticing that y ¼ x� dtwn �A�1

n;nþ1ðxÞ, analogous computations as with the proof of (26)
give
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Z
Xni

wðAn;nþ1ðyÞÞdy ¼
Z

Xnþ1i

wðxÞð1� dtdivxwn �A�1
n;nþ1ðxÞÞdx;

which is (27). �

Relations (26) and (27) can be viewed as discrete counterparts of relation (16). They are related to the so-

called geometric conservation law (hereafter abbreviated as GCL).

The notion of GCL has been much investigated in the framework of the finite volume method, see in

particular [22,31,37]. Guillard and Farhat prove in [22] that the GCL is a sufficient condition for a

numerical scheme to be first-order time-accurate on a moving grid, independently of the grid motion.
More generally, these authors claim that a higher accuracy is obtained with schemes satisfying the GCL

compared to the schemes that violate it and that the schemes satisfying the GCL generally allow for a

larger time step. In the framework of finite element methods, Formaggia and Nobile prove in [12] that

the GCL is a sufficient condition to ensure the unconditional stability of a backward Euler scheme

applied to an advection diffusion equation on a moving domain. Let us also cite the work by Le Tallec

and Mouro [30], where implications of the GCL in the framework of fluid structure interaction problems

are discussed.

In the sequel, we will show that (26) and (27) are key properties to ensure discrete mass conservation and
global energy inequality.

5.2. Discrete mass conservation

We now present the ingredients that allows us to obtain an exact mass conservation of each fluid after

time and space discretization.

The first ingredient is the computation of the normals. It is convenient, in view of enforcing Dirichlet

boundary conditions in (25), to compute approximated discrete normals at the nodes of the interface. But

these approximation must be done carefully. More precisely, let i be a node on the interface Rn and let ui be
the basis function associated to this node. Following Engelman et al. [10], we define n1;i by

n1;i ¼
1R

Rn ui dr

Z
Xn
1

rui dx: ð28Þ

Note that, if we define n2;i by substituting Xn
1 by Xn

2 in (28), it is straightforward to check that n1;i ¼ �n2;i.
We then define ni ¼ n1;i the approximated normal, on node i, oriented from Xn

1 to Xn
2. The component of ni

are denoted by ðnð1Þi ; nð2Þi ; nð3Þi Þ. Let vh be an element of Vh whose components are ðvð1Þ; vð2Þ; vð3ÞÞ. By con-
vention, we denote

vh � nh ¼
X
i

ðvð1Þi n
ð1Þ
i þ vð2Þi n

ð2Þ
i þ vð3Þi n

ð3Þ
i Þui:

Then, formula (28) yields the following key property: let v1h (resp. v
2
h) be a function of Vh whose support is

included in Xn
1 (resp. Xn

2), thenZ
Xn
1

divv1h dx ¼
Z

Rn
v1h � nh dr and

Z
Xn
2

divv2h dx ¼ �
Z

Rn
v2h � nh dr: ð29Þ

The second ingredient to ensure mass conservation is to satisfy the following property:Z
Xni

divunh dx ¼ 0 for i ¼ 1; 2: ð30Þ
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This can be achieved either by using a space of discontinuous finite elements for the discretization of the

pressure (for example with the mixed elements Q2=P1), or by imposing with a Lagrange multiplier that the
numerical flux through the interface vanishes:Z

Rn
unh � nh dr ¼ 0: ð31Þ

For more details on this latter strategy, we refer the interested reader to Formaggia et al. [11]. We have

tested the two approaches and they both give the expected results. Another interesting possibility that we
have however not investigated is to use continuous finite element for the pressure on each fluid, but dis-

continuous on the interface.

On a fixed domain, the two relations (29) and (30) would be sufficient to ensure the mass conservation.

But the GCL property of Lemma 1 will be needed to extend it to the case of moving domains.

Proposition 2. If the discrete normals to the interface and the discrete velocity are computed in such a way that
formula (29) and (30) are true, and if the motion of the mesh is such that (26) is satisfied, then the mass of each
fluid is preserved:

qijXn
i j ¼ qijXnþ1

i j for i ¼ 1; 2;

where jXn
i j denotes the measure of Xn

i .

Proof. Relation (26) gives with w ¼ qi,

qijXnþ1
i j � qijXn

i j ¼ dtqi

Z
Xni

divy w
n
h dy:

Thus, using successively (29), (12), and (30), we have

qijXnþ1
i j � qijXn

i j ¼ dtqi

Z
Rn
wnh � ni dr ¼ dtqi

Z
Rn
unh � ni dr ¼ dtqi

Z
Xni

divyu
n
h dy ¼ 0: �

5.3. Discrete energy inequality

It is assumed throughout this section that stable finite element spaces are used.

Proposition 3. We denote by

En ¼
Z

Xn

qjunj2

2
dy þ

Z
Xn

jBnj2

2l
dy ð32Þ

the total energy of the system at time tn. If the body force f vanishes, the solution computed by the algorithm of
Section 4.3 satisfies the energy inequality

Enþ1 � En
dt

þ
Z

Xnþ1
2gj�ðunþ1Þj2 dxþ

Z
Xnþ1

1

lr
jcurlBnþ1j2 dx6 0:

Proof. We take v ¼ unþ1 in the hydrodynamic equation and C ¼ ð1=lÞBnþ1 in the magnetic equation.
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The first argument of the proof is once again based on the GCL. Elementary manipulations give

1

dt

Z
Xnþ1

qjunþ1j2 dx� 1

dt

Z
Xn

qun � unþ1 dy ¼ 1

dt

Z
Xnþ1

qjunþ1j2 dx� 1

2dt

Z
Xn

qjunþ1j2 dy

� 1

2dt

Z
Xn

qjunj2 dy þ 1

2dt

Z
Xn

qjunþ1 � unj2 dy:

Then, using Lemma 1, we obtain

1

dt

Z
Xnþ1

qjunþ1j2 dx� 1

dt

Z
Xn

qjunþ1j2 dy ¼
Z

Xnþ1
qjunþ1j2divwn dx;

and therefore

1

dt

Z
Xnþ1

qjunþ1j2 dx� 1

dt

Z
Xn

qunþ1 � un dy ¼ 1

2dt

Z
Xnþ1

qjunþ1j2 dx� 1

2dt

Z
Xn

qjunj2 dy

þ 1

2dt

Z
Xn

qjunþ1 � unj2 dy þ 1

2

Z
Xnþ1

qjunþ1j2divwn dx: ð33Þ

Following the same idea, a similar relation can be straightforwardly obtained for the magnetic field.

The second argument is to use the ‘‘correction’’ that we have performed on the advection term. Defi-

nition (23) gives

~ccnþ1wn ðun; unþ1; unþ1Þ ¼
Z

Xnþ1
qðun � wnÞ � r junþ1j2

2

 !
dxþ 1

2

Z
Xnþ1

qjunþ1j2 divun dx

þ dq
2

Z
Rnþ1

ðun � wnÞ � njunþ1j2 dr:

The first integral reads

Z
Xnþ1

qðun � wnÞ � r junþ1j2

2

 !
dx ¼ � 1

2

Z
Xnþ1

junþ1j2 divðqðun � wnÞÞdx

¼ � 1
2

Z
Xnþ1

qjunþ1j2 divðun � wnÞdx� dq
2

Z
Rnþ1

ðun � wnÞ � njunþ1j2 dr:

Thus,

~ccnþ1wn ðun; unþ1; unþ1Þ ¼ 1

2

Z
Xnþ1

qjunþ1j2 divwn dx: ð34Þ

This term added to the last one of (33) exactly compensates for the quantity �dnþ1ðwn; qunþ1; unþ1Þ.
Finally, the third argument of the proof consists in noticing that the term coming from the Lorentz force

ð1=lÞlnþ1ðunþ1;Bn;Bnþ1Þ exactly balances the coupling term in the magnetic equation. This fact comes from

the way we linearize the equation in the Euler scheme (24).

Then, after some standard integrations by parts, we readily obtain (32). �
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6. Surface tension

Surface tension is a force appearing at the interface between the aluminium and the cryolite. This force

tends to minimize the area of the interface. It is generally admitted that surface tension does not play a

major role in aluminium electrolysis. Nevertheless, it might be not completely negligible, especially when

physical instabilities appear. Moreover, it may also have a smoothing effect on the numerical instabilities of

the interface. Therefore, it is useful to allow our computation to take it into account.

There is a large body of literature reporting on numerical results accounting for surface tension effects.
However, to the best of our knowledge, not so much literature has been devoted to the detailed explanation

of the numerical treatment of surface tension terms. In order to compensate for this lack and also for the

sake of consistency, we now give the lines of our strategy, emphasizing that we do not claim any originality.

The reader familiar with this kind of problem may easily skip this part.

The classical Laplace formulation of the surface tension correlates the normal force with the main

curvature of the surface (see [29] for example)

TS ¼ cHn: ð35Þ

The parameter c is the surface tension coefficient (in N/m) and H is the mean curvature positively counted
with respect to the normal n. The surface tension coefficient at the interface aluminium/cryolite is 0.5N/m

(in comparison of 0.07N/m for water/air interface). In the non-dimensional formulation of Section 2.2, the

following quantity must be added to the right-hand side of the equations:

1

We
~HHn;

where We ¼ q1U
2L=c is the Weber number.

For a 1D surface (a curve) H ¼ ð1=RÞ, with R the radius of curvature positively counted along the normal.
For a 2D surface,H ¼ ð1=R1Þ þ ð1=R2Þ, withR1 andR2 the principal radiuses of curvature positively counted
along the normal. Themain difficulty to compute the surface tension is that it requires, at least in principle, the

mean curvature of the surface, which is not trivial to evaluate on a discretized surface.

In order to discretize the surface tension, we multiply (35) by a test function U and integrate over the

interface R:Z
R
TSUdr ¼

Z
R

cHU:ndr: ð36Þ

The mean curvature H can be expressed as the opposite of the trace of the derivative of the Gauss ap-
plication which is the application associating to each point of the surface the normal of this surface. This

can be written in the following way (see for example [4]):

H ¼ �trðrsnÞ

with rs the gradient along the surface (more precisely, the orthogonal projection of the gradient onto the

tangential space).

The generalization of the well-known divergence theorem to surfaces of non-zero curvature is the fol-

lowing:Z
R
trðrsnÞU:ndr ¼

Z
R
trðrsUÞdr �

Z
oR

U:mdl: ð37Þ

The vector m is the normal vector to oR (in the tangential space of R). The weak formulation of the surface
tension is then
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Z
R
TSUdr ¼ �c

Z
R
trðrsUÞdr þ c

Z
oR

U:mdl: ð38Þ

The vector m is the contact angle between the interface and the wall, it is a data of the problem. In

practice, we have chosen a contact angle equal to 0. We now have to express the derivative trðrsUÞ on the
discretized surface R.
In one dimension, it is easy to evaluate trðrsUÞ using the formula

trðrsUÞ ¼ hdUðeuÞ; eui
keuk2

with dUðeuÞ ¼ dU=du. In this formula, eu is a vector in the tangent space: eu ¼ of =ou with f a parame-
terization of the curve. In practice, this parameterization is given by the application which sends the element

of reference ½0; 1� onto the finite element. The derivative dU=du is then evaluated by finite differences. We
are now going to generalize this approach in two dimensions.

In order to evaluate the divergence along the surface trðrsUÞ in two dimensions, we need a local pa-
rameterization f : U � R2 ! R3. From a discrete point of view, this parameterization is given by the finite

element test functions (we suppose that we use Lagrangian finite element)

f :
½0; 1�2 ! R3;
ðu; vÞ 7!

P
P2PðEÞ /PXP ;

(

where /P : ½0; 1�
2 ! R is the shape function related to the point P , XP is the coordinate vector of P andPðEÞ

is the set of the points of the element E. A basis of the tangential space is given by ðeu; evÞ with eu ¼ of =ou
and ev ¼ of =ov. The metric tensor M is the matrix

E F
F G

	 


with E ¼ keuk2, F ¼ heu; evi and G ¼ kevk2. The element of area is da ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG� F 2

p
dudv. We want to

evaluate the trace of the derivative dU along the surface. We define: e ¼ hdUðeuÞ; eui, f1 ¼ hdUðeuÞ; evi,
f2 ¼ hdUðevÞ; eui, and g ¼ hdUðevÞ; evi. Of course, we have dUðeuÞ ¼ oU=ou and dUðevÞ ¼ oU=ov. We have
the following equality:

e f1
f2 g

	 

¼ a1;1 a1;2

a2;1 a2;2

	 

E F
F G

	 


with A ¼ ½ai;j� the matrix of the derivative dU in the basis ðeu; evÞ. A simple computation gives the following

expression of trðrsUÞ ¼ �ða1;1 þ a2;2Þ:

trðrsUÞ ¼ � eGþ Eg � F ðf1 þ f2Þ
EG� F 2 :

Let us now explain the way we evaluate e, f 1, f 2, and g for a Q1 discretization (see Fig. 3). Let P be the
point ð0; 0Þ, P 0 the point ð1; 0Þ and P 00 the point ð0; 1Þ. The application f0ðtÞ ¼ f ðt; 0Þ is a parameterization
of ½PP 0�. Then, we have

dUðP ÞðeuÞ ¼
d

dt
ðUðcðtÞÞjt¼0 � Uðcð1ÞÞ � Uðcð0ÞÞ � UðP 0Þ � UðPÞ:
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In the same manner, we derive

dUðP ÞðevÞ � UðP 00Þ � UðP Þ;

and therefore

e � hUðP 0Þ � UðPÞ; eui;
f1 � hUðP 0Þ � UðPÞ; evi;
f2 � hUðP 00Þ � UðPÞ; eui;
g � hUðP 00Þ � UðPÞ; evi:

We can therefore implement a weak formulation of the term of surface tension.

7. Numerical experiments

All the results shown in this section are presented in the non-dimensional form detailed in Section 2.2.

7.1. On the mass conservation

We described precisely in Section 5.2 the three key arguments that allow us to ensure mass conservation

in the two-fluids problems. We give in this section a few examples of mass loss if some of the above re-

quirements are not fulfilled. The aim of this section is therefore to illustrate by numerical experiments that
the second and third ingredients (namely the mass conservation of each fluid at each time step, see formula

(30) and the GCL, see formula (26)) seem indeed to be necessary in order to ensure mass conservation, at

least for general cases.

For this purpose, we consider the case when the two fluids are only subjected to an oscillating gravity.

The computational domain is X ¼ ½�2; 2� � ½0; 2�, the lower (resp. upper) fluid occupies at t ¼ 0 the sub-

domain X1;t¼0 ¼ ½�2; 2� � ½0; 1� (resp. X2;t¼0 ¼ ½�2; 2� � ½1; 2�). The potential of the body force is given by

Fig. 3. A Q1 element parameterized by ½0; 1�2.
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~UUðx; y; tÞ ¼ Ax sinð2pmtÞ � y:

We choose the following non-dimensional parameters: Re1 ¼ Re2 ¼ 100, M ¼ 0:91, m ¼ 0:0625, and
A ¼ 0:05. Fig. 4 shows the evolution in time of the elevation of a point on the interface.
In Fig. 5, we show the evolution in time of the mass of fluid 1 with three finite element spaces: Q2=Q1

(with a continuous pressure), Q2=P1 (with a discontinuous pressure), and Q2=Q1 with the flux constraint
(31). The pair Q2=Q1 does not satisfy (30) which explains the non-conservation of mass.
We now illustrate the role of the GCL in mass conservation. We use the Q1=Q1 stabilized finite element

with flux constraint (31). Thus (29) is now satisfied. If the displacement of the mesh is purely vertical, the
GCL property (26) is satisfied, and the mass is preserved. But, if we replace system (25) by

Fig. 5. Mass conservation is ensured with Q2=P1 or Q2=Q1 with a flux constraint (the two curves are the same), but it fails with Q2=Q1
elements.

Fig. 4. The time history of the elevation of a point of the interface.
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� Mw ¼ 0 on Xn
i ;

w ¼ u on Rn;

ow

on
¼ 0 on oX;

ð39Þ

the displacement of the mesh is now arbitrary, and relation (26) is no more true (an additional term appears

in the development of the Jacobian determinant). We show on the left-hand side of Fig. 6, the mesh ob-

tained with (25) and on the right-hand side, the one obtained with (39). Of course, it seems not very natural

to allow for a mesh displacement along to x axis for this test case, but it is just for illustration. We see on
Fig. 7 that the mass is not preserved when the displacement is along x and y. The fact that relation (30) is
not sufficient on a moving mesh to ensure mass conservation is striking.

7.2. A MHD experiment with a free surface and a free interface

We present here the numerical simulation of a laboratory MHD experiment (described by Moreau

[33,34]). A uniform vertical electrical current flows in a cylindrical tank through two layers of fluid sub-

jected to the gravity. The interface between the fluid and the upper surface are both free (see Fig. 8). The

above formulation must be slightly modified to treat this case due to the presence of two free surfaces, but

the modifications are straightforward and we do not detail them here. Let us just mention that, because of

the presence of the upper free surface, we do not perform the ‘‘pressure correction’’ presented in Section 2.2.

This test case is of interest for two reasons: first, the physical system is not too far from the aluminium
electrolysis, and second, an analytical steady-state solution is known.

We denote by ~JJ0 the intensity of the non-dimensional homogeneous density of current and by R the

radius of the cylinder. Working with the natural cylindrical coordinates ðer; eh; ezÞ associated with the cy-
lindrical tank, we have

~BB ¼ ~BBðrÞeh with ~BBðrÞ ¼ � J0
2
r ðfor r6RÞ;

Fig. 6. The velocity of the mesh is computed with (25) on the left-hand side, and with (39) on the right-hand side.
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and the magnetic force is

S curl ~BB� ~BB ¼ � SJ
2
0

2
rer:

The only body force being the gravity, we have ~UU ¼ �z. Looking for a solution with u ¼ 0, we have

r~pp ¼ � m
Fr
ez �

SJ 20
2
r er; ð40Þ

with m ¼ M in the upper fluid and m ¼ 1 in the lower one. Thus

~ppðr; zÞ ¼ � m
Fr
z� SJ

2
0

4
r2 þ C;

Fig. 7. Both curves are obtained with Q1=Q1 finite element with flux constraint (31). When the displacement of the mesh is arbitrary,
Lemma 1 does not apply and we observe a mass loss, contrarily to the case when the displacement is purely vertical.

Fig. 8. Schematic representation of the experiment of Section 7.2.
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where C is a constant. We denote by h01 (resp. h
0
2) the elevation of the free interface (resp. surface) before the

application of the electrical current, and by h1ðrÞ (resp. h2ðrÞ) their steady-state elevation, in the presence of
the electrical current. The pressure above the free surface is supposed to be constant and equal to zero.

Thus, we have

Fig. 9. Elevation of the steady-state top surface in the simulation of Section 7.2. Comparison between theoretical and numerical

results.

Fig. 10. Mesh and isovalues of pressure on a portion of the mesh, in presence of gravity (left), after the application of an electrical

current (right).
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0 ¼ ~ppðr; h2ðrÞÞ ¼ �M
Fr
h2ðrÞ �

SJ 20
4
r2 þ C:

The constant C is then determined by writing the conservation of the volume of the upper fluid, and we
finally obtain

h2ðrÞ ¼ h02 þ
S Fr J 20R

2

8M
1

�
� 2r2

R2

�
: ð41Þ

Next, taking the curl of Eq. (40), we have

0 ¼ curl
m
Fr
ez

� �
¼ r m

Fr

� �
� ez ¼

M � 1

Fr
n� ez;

Fig. 11. Evolution in time of the elevation of centers of the top surface (left) and of the interface (right) in the simulation of Section 7.2.

X

Y

Z

Fig. 12. On the right, the shape of the interface at large time. The circuit of conductors is represented on the left. In the factories, the

cells are in series, so that the points A (resp. B, C, and D) are linked to the points A0 (resp. B0, C0, and D0) of the next cell. The cell is

represented by the lower parallelepiped, while the two smaller parallelepipeds above model the anods.
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where n is the normal to the interface. Therefore, n ¼ ez, which proves that the steady-state interface is

horizontal

h1ðrÞ ¼ h01:

We use the following numerical values: Re1 ¼ Re2 ¼ 200, S ¼ 1, Rm1 ¼ Rm2 ¼ 1, Fr ¼ 8, J0 ¼ 0:3,
M ¼ 0:5, and We ¼ 102. Fig. 9 shows a comparison between the elevation of the upper surface and the

analytical solution (41) along the plane y ¼ 0. Fig. 10 shows the steady-state upper surface and the in-

terface. Fig. 11 shows the time evolution of the elevation of the center of the upper surface (left-hand side)

and of the interface (right-hand side).

Fig. 13. Rolling phenomenon.
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7.3. Aluminium electrolysis cells simulations

We have also performed numerical simulations on real cells. The geometry of the domain of calculus is

that of the industrial cell. The boundary conditions on the magnetic fields stem either from experimental

measures in the factory or from independent numerical simulation of the magnetic field created by the

conductors around the cell.

The aim of our simulations is to recover some well-known phenomenological parameters (e.g., the

number of vortices: see [14]) and to have an insight into some parameters that are difficult to measure (e.g.,

the shape of the interface between the bath and the metal).

We only present here the result of a computation on a cell with an over simplified circuit of conductors
(see Fig. 12). However, this circuit is enough to give a good idea of the real problem. The electric current in

the cell is 90 kA and the dimensions of the cell are about 3� 9� 1:5m. For Biot and Savart computations
(giving the boundary conditions on the magnetic field), we use either linear or parallelepipedic conductors.

This interface has been obtained after a long time computation.

Fig. 14. The phenomenon of metal pad rolling in a circular cell. Visualization of the interface and the lower fluid (the upper fluid is not

represented for the sake of clarity). This is a case with Bz ¼ 0:2.

J.-F. Gerbeau et al. / Journal of Computational Physics 184 (2003) 163–191 187



7.4. Metal pad roll instabilities

One of the phenomena which is observed in industrial cells and which has been a lot investigated over the

past few years is metal pad rolling. It is an oscillation of the cryolite/aluminium interface with a period

ranging from five seconds up to more than 1min. The aim of most of the theoretical and experimental

studies of MHD cells has been to understand, forecast and avoid this phenomenon. See [28] and the ref-

erences herein for a survey on the main approaches until 1992.

One of the explanation of the metal pad rolling is the presence of a vertical field. The famous Sele�s
criterion belongs to this theory (see [40]). Sele has been the first one to give a physical reason of the rotation

by the interaction of the vertical magnetic field with horizontal perturbed currents. More recently, Da-
vidson and Lindsay [7] have derived a more general linearized system. Their analysis leads to quantitative

results for the instability of standing and travelling waves in rectangular and circular cells. They also give a

mechanical analogue which provides a good physical insight into the phenomenon.

The physical phenomenon is explained on Fig. 13. An initial tilting (or a long-wavelength disturbance)

creates a perturbed current flow j ¼ J� J0 (J0 denotes the unperturbed—or background—current and J the

total current in the cell) which is mainly vertical in the cryolite and horizontal in the aluminium (because of

the strong difference of electrical conductivity). The interaction of this current with the vertical magnetic

field results in a horizontal Lorentz force F ¼ j� B, in the direction perpendicular to j. It consequently
induces a rotating motion of the interface.

In some cases, this phenomenon can lead to an instability: when the vertical field is too large, the am-

plitude of the oscillation may grow with time. It has been reported on that the metal can even get out of the

cell in some cases!

In [7], it is shown that it is the interaction between gravitational modes which leads to instable rolling

waves. In particular, the authors assert that a circular cell becomes instable whenever a vertical field Bz is

Fig. 15. Time evolution of the elevation of a point of the interface in the ‘‘metal pad roll’’ experiment for various values of Bz. The only
stable simulation is obtained with Bz ¼ 0:1.
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applied. We have chosen to reproduce this simple experiment of a circular cell to check this strong result of

instability, which is obtained after many assumptions and linearization (see [7]). The linearized approach

may well reproduced qualitatively the metal pad rolling, but a few of the assumptions are quite ques-

tionable as far as quantitative results are concerned.

The test case cell is a circular cell of radius equal to 1 and height equal to 2. Initially, the fluids are at rest,

the interface is situated at the mean height and is flat and horizontal. On the wall, we impose during the

whole simulation the magnetic boundary conditions corresponding to a uniform vertical electrical current

J0ez (when the fluids are at rest and the interface is horizontal). For 06 t6 1, the fluids are subjected to a
gravity having an angle of 5� with the vertical. This slightly ‘‘tilts’’ the cell and creates an initial disturbance.
For 1 < t6 25, the gravity is put straight again, and a vertical magnetic field Bz is superimposed to the
magnetic field created by the electrical current. This actually induces the metal rolling phenomenon. For

t > 25, the vertical magnetic field is removed, and the system can therefore retrieve its initial configuration,

at least when it does not explode before. The non-dimensional parameters are the following:

Re1 ¼ Re2 ¼ 1000, M ¼ 0:935, Fr ¼ 0:1, Rm1 ¼ 10�4, Rm2 ¼ 1:, S ¼ 1:, We ¼ 50, and J0 ¼ 2. We perform

the simulations for various values of Bz. Fig. 14 shows the lower fluid and the interface when Bz ¼ 0:2.
Fig. 15 shows the evolution in time of the elevation of the point of the interface initially situated at
ð1:; 0:; 1:Þ for Bz ¼ 0:1; 0:2; 0:3 and 0.5. The last three values lead to an ‘‘explosion’’ of the interface. The
physical explanation of the phenomenon proposed in Fig. 13 can be checked by computing the disturbed

currents. In order to compute this disturbance, the initial current curlB0 is subtracted from curlB. A few

streamlines of the perturbed current are represented in Fig. 16: there is indeed a ‘‘loop of current’’ as

predicted in the theoretical explanation of the phenomenon.

Fig. 16. Loops of currents in cryolite during metal pad roll. We show here some streamlines of the field j (the perturbed current). The

perturbed current goes here from the right-hand side of the figure (where the elevation of the interface is the highest) to the left-hand side.
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In other simulations, we have also observed that small disturbances of the initial state do not lead to

instability, at least on a reasonable time scale. In the same way, a small positive Bz does not induce in-
stability. This is in apparent contradiction with the results of the linear approach which claim the instability

of the cell. At least our results show that, should the instability occur, it will occur only in the large time

limit, and therefore may not be relevant from the practical viewpoint. Of course, definite conclusions about

this comparison between the two approaches are yet to be obtained.

This test case demonstrates the capability of our nonlinear approach to simulate complex MHD phe-

nomena. In the past, these phenomena were analyzed with models based on many simplifications of the
original equations providing excellent qualitative results most of the time. But the influences of such

simplifications need in any case to be tested and may become not negligible when precise results are desired.

We have demonstrated that we can reproduce qualitatively the results predicted by simplified models, but

that we are also able to give quantitative informations on the transient evolution of the system. This ca-

pability should have practical implications in the study of the instabilities of industrial cells.
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